PHYS 301 Tutorial #8 — group problem solving

Copies of the inside front and back covers of the Griffiths text are provided on the last
page.

1. In the last tutorial, we found that the magnitude of magnetic field due to a uniform sheet of

current K is given by:

1
B = SpkK (1)
This time, consider a pair of parallel current sheets. Both sheets are parallel to the xy-plane. One
is located at z = a and carries a uniform sheet current K, = +K 2 and the other is at z = —a with
current K = —K 7.

(a) Determine the magnitudes and directions of the magnetic fields in the regions: z > a, —a <
z < a, and z < —a. Make use of Eq. ().

(b) Given that B =V x A, determine the vector potential in the regions: z > a, —a < z < a, and
z < —a. Make use of your results from (a). Ensure that your vector potentials are continuous at
z = *a.

(¢) Check the other boundary condition on A:

a*Aabove aAbelow
on on

at z = *a.

2. Find the magnetic vector potential of a finite segment of straight wire carrying current /. Put

the wire on the z-axis with its ends at positions z; and z».
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3. In Example 5.11 of Section 5.4 of the 5th Ed of the Griffiths text, the vector potential inside
and outside a spinning spherical shell of radius R and surface charge density o is calculated. It is

an interesting example, and you should read and understand this problem. The results are:

Ain(r,0,0) = 'u()};war sin 6 95

_ poR'wosing -

Aout(ra 97 ¢) - 3 7”2 ¢7

where w is the angular rotation speed.
(a) Use these results to show that the magnetic field inside the sphere (r < R) is constant.

(b) Next, imagine a uniformly-charged solid sphere of charge density p, radius R and angular velocity
w. It can be constructed by adding up a bunch of spherical shells of successively larger radii. Show
that a spherical shell of radius 7" and thickness dr’ inside the solid sphere would have an effective
surface charge density o = p dr’. Furthermore, show that the vector potential due to this spherical
shell can be expressed as:

/ d / .
dA;, = %r sinf ¢

po(r' ) wp dr’ sinf J

dAout - 3 2

(c) Show that the vector potential inside the solid sphere can be calculated by evaluating the

r R
Asphere = / dAin + / dAout-
0 r

following integral:

Evaluate the integral to find:
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(d) Use Ay, from (c) to find the magnetic field inside the solid rotating sphere. One convenient

B, = ““;’p [(32 - %«2) 5o grQ sin 6, é} . 2)

form of the solution is:

This form of the solution is a little unusual because it mixes unit vectors from spherical and Cartesian
coordinates. However, it is convenient because it shows that there is a strong component of the
magnetic field in the z-direction (as we ought to expect) and a second component that is largest
when 6 = /2.

(e) Finally, use Eq. to find the magnetic field at the centre of the rotation sphere.
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VECTOR DERIVATIVES VECTOR IDENTITIES

Cartesian. dl=dxX+dyy+dzz; dt=dxdydz Triple Products

Gradient:  vi=Lgy 0 0, | (1) A-BxC)=B-(CxA)=C-(AxB)
ax dy 0z
2) AxBxC)=BA-C)—-CA-B)

av avy,  dv
Divergence: V-v = — % £

ax ' ay oz Product Rules
Curl: ~ Vxy= (3 - 31) it (3_ _ 8_> - (8_ _ 8vx> 2 3) V(o) =f(Ve) +&(V/)
ady 9z 9z ox ax dy
e 4 VA-B)=Ax(VxB)+Bx(VxA)+ (A -V)B+@®B-V)A

Laplacian: Vzt:—t+_+_
S 6 V-(fA=f(V-A)+A-(V))

Spherical. dl:drf‘—i—rd&é—krsin()dqbq;; dt =r?sinfdrdod¢ 6) V- AxB)=B-(VxA)—A-(VxB)

or . 10t 4 1 o
0

Cradient: Vit =3 b+ 50t oo 95 ® (1) Vx(fA) = f(V x A) —A x (V)
VxAxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)
Divergence: V . v_.——(r ,;ﬁ(sinOUQ)-i- 1 vy ®) x (AxB) =( ) ( ) (
d rsinf d¢
Second Derivatives

Curl: v _ J 0 ng
e XY= oing |99 SN0 — 55 @ V-(VxA) =0

I1_L o8y, 38 g Lo 9] (10) Vx(Vf)=0

. [sin@ 0 or ('”"’)]0 Bl [Br (rve) = 54 ]¢

(11) Vx(VxA)=V(V-A)—-V?A

10 (,0 19 ot 1 o
Laplacian: V%t = — 72sing 56 \""0%6 ) T 2aa 902
placian " a,( ar>+r25m9 20 (“n 39)+r25in29 397

Cylindrical. dl=ds§+sd¢+dzs; dr=sdsdpdz

FUNDAMENTAL THEOREMS
Gradient: Vtzs—;§+%§—t¢3+g—ii
Divergences W5 = 13(5%) " 183% . %vz Gradient Theorem : fab(Vf) -dl= f(b) — f(a)
Divergence Theorem: [(V-A)dt=¢A-da
il VXV:[é%‘%]§+{%_%:lé+%[%(s%)_({;z;}i CurlThieorem: J(VxA) -da=¢A-dl

193 [ ot 18% 8%
P 2, 29 ( 9oF L
Laplacian: V?t = 75 (s 3s> + = —8¢2 4+ —



BASIC EQUATIONS OF ELECTRODYNAMICS
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FUNDAMENTAL CONSTANTS

Maxwell’s Equations

In general:
1
V-E=—p
€0
V xE = —g
ot
V-B=0
JE
V x B = wol + noeo—
ot
Auxiliary Fields
Definitions :
D= EQE +P
1
H=—B-M
Mo
Potentials
E=-VV — %,
ot

Lorentz force law

F=¢gE+vxB)

Energy, Momentum, and Power

In matter:

f

V'D:,Of

VxE:—g
dt

V-B=0
aD

VxH= —
Jr+ Y

Linear media:

P=¢x.E, D=cE

1

M=yx,H, H=-B

nm

B=V xA

1 1
Energy: U= —/ <€0E2+ —Bz> dt
2 Ho
Momentum: P=¢ [(ExB)dr

Poynting vector: S = L(E x B)
Mo

Larmor formula: P = ﬂqzaz
(37,44

€0 =8.85 x 10712 C?/Nm?
po =4m x 1077 N/A?

¢ =3.00x 10*m/s

e =1.60x107°C

m =9.11 x 1073 kg

(permittivity of free space)
(permeability of free space)
(speed of light)

(charge of the electron)

(mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical

x = rsin6 cos ¢
y =rsiné sing
z =rcosf

r=+/x*+y?+z?
6 = tan~! (,/x2 + yz/z)

¢ =tan™' (y/x)
Cylindrical

X = scos¢

y = ssing

z=z

s = /x2+y2
¢ = tan~' (y/x)
Z =2

f(:sinecosqbf'—i—cosecosd)é——sin ¢dA)
y =sin@sin ¢ T + cosOsin ¢ 6 +cosd ¢
7 =cosfr—sinf 6

F =sinfcosp X+ sin fsingy + cosb z
6 = cosfcospX+cosfsingy — sin 02
¢ =—singX+cosgy

X =cos¢§—sinpo
y=sin ¢S+ cosp ¢

i=1

§ =cos¢X+singy

¢ =—sinpX+cosgpy

i=1



